6,357 research outputs found

    Electrical control of metallic heavy-metal/ferromagnet interfacial states

    Full text link
    Voltage control effects provide an energy-efficient means of tailoring material properties, especially in highly integrated nanoscale devices. However, only insulating and semiconducting systems can be controlled so far. In metallic systems, there is no electric field due to electron screening effects and thus no such control effect exists. Here we demonstrate that metallic systems can also be controlled electrically through ionic not electronic effects. In a Pt/Co structure, the control of the metallic Pt/Co interface can lead to unprecedented control effects on the magnetic properties of the entire structure. Consequently, the magnetization and perpendicular magnetic anisotropy of the Co layer can be independently manipulated to any desired state, the efficient spin toques can be enhanced about 3.5 times, and the switching current can be reduced about one order of magnitude. This ability to control a metallic system may be extended to control other physical phenomena.Comment: 20 pages, 7 figures, Accepted by Physical Review Applied (2017

    Exercise-Induced Changes in Exhaled NO Differentiates Asthma With or Without Fixed Airway Obstruction From COPD With Dynamic Hyperinflation.

    Get PDF
    Asthmatic patients with fixed airway obstruction (FAO) and patients with chronic obstructive pulmonary disease (COPD) share similarities in terms of irreversible pulmonary function impairment. Exhaled nitric oxide (eNO) has been documented as a marker of airway inflammation in asthma, but not in COPD. To examine whether the basal eNO level and the change after exercise may differentiate asthmatics with FAO from COPD, 27 normal subjects, 60 stable asthmatics, and 62 stable COPD patients were studied. Asthmatics with FAO (n = 29) were defined as showing a postbronchodilator FEV(1)/forced vital capacity (FVC) ≤70% and FEV(1) less than 80% predicted after inhaled salbutamol (400 μg). COPD with dynamic hyperinflation (n = 31) was defined as a decrease in inspiratory capacity (ΔIC%) after a 6 minute walk test (6MWT). Basal levels of eNO were significantly higher in asthmatics and COPD patients compared to normal subjects. The changes in eNO after 6MWT were negatively correlated with the percent change in IC (r = −0.380, n = 29, P = 0.042) in asthmatics with FAO. Their levels of basal eNO correlated with the maximum mid-expiratory flow (MMEF % predicted) before and after 6MWT. In COPD patients with air-trapping, the percent change of eNO was positively correlated to ΔIC% (rs = 0.404, n = 31, P = 0.024). We conclude that asthma with FAO may represent residual inflammation in the airways, while dynamic hyperinflation in COPD may retain NO in the distal airspace. eNO changes after 6MWT may differentiate the subgroups of asthma or COPD patients and will help toward delivery of individualized therapy for airflow obstruction

    Spin-orbit torque switching of synthetic antiferromagnets

    Full text link
    We report that synthetic antiferromagnets (SAFs) can be efficiently switched by spin-orbit torques (SOTs) and the switching scheme does not obey the usual SOT switching rule. We show that both the positive and negative spin Hall angle (SHA)-like switching can be observed in Pt/SAF structures with only positive SHA, depending on the strength of applied in-plane fields. A new switching mechanism directly arising from the asymmetric domain expansion is proposed to explain the anomalous switching behaviors. Contrary to the macrospin-based switching model that the SOT switching direction is determined by the sign of SHA, the new switching mechanism suggests that the SOT switching direction is dominated by the field-modulated domain wall motion and can be reversed even with the same sign of SHA. The new switching mechanism is further confirmed by the domain wall motion measurements. The anomalous switching behaviors provide important insights for understanding SOT switching mechanisms and also offer novel features for applications.Comment: 40 pages, 14 figure

    Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition

    Get PDF
    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications

    Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation

    Get PDF
    Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%

    Cholesterol cholelithiasis in pregnant women: pathogenesis, prevention and treatment

    Get PDF
    Epidemiological and clinical studies have found that gallstone prevalence is twice as high in women as in men at all ages in every population studied. Hormonal changes occurring during pregnancy put women at higher risk. The incidence rates of biliary sludge (a precursor to gallstones) and gallstones are up to 30 and 12%, respectively, during pregnancy and postpartum, and 1-3% of pregnant women undergo cholecystectomy due to clinical symptoms or complications within the first year postpartum. Increased estrogen levels during pregnancy induce significant metabolic changes in the hepatobiliary system, including the formation of cholesterol-supersaturated bile and sluggish gallbladder motility, two factors enhancing cholelithogenesis. The therapeutic approaches are conservative during pregnancy because of the controversial frequency of biliary disorders. In the majority of pregnant women, biliary sludge and gallstones tend to dissolve spontaneously after parturition. In some situations, however, the conditions persist and require costly therapeutic interventions. When necessary, invasive procedures such as laparoscopic cholecystectomy are relatively well tolerated, preferably during the second trimester of pregnancy or postpartum. Although laparoscopic operation is recommended for its safety, the use of drugs such as ursodeoxycholic acid (UDCA) and the novel lipid-lowering compound, ezetimibe would also be considered. In this paper, we systematically review the incidence and natural history of pregnancy-related biliary sludge and gallstone formation and carefully discuss the molecular mechanisms underlying the lithogenic effect of estrogen on gallstone formation during pregnancy. We also summarize recent progress in the necessary strategies recommended for the prevention and the treatment of gallstones in pregnant women

    Fast Wavefront Propagation (FWP) for Computing Exact Geodesic Distances on Meshes

    Get PDF
    Computing geodesic distances on triangle meshes is a fundamental problem in computational geometry and computer graphics. To date, two notable classes of algorithms, the Mitchell-Mount-Papadimitriou (MMP) algorithm and the Chen-Han (CH) algorithm, have been proposed. Although these algorithms can compute exact geodesic distances if numerical computation is exact, they are computationally expensive, which diminishes their usefulness for large-scale models and/or time-critical applications. In this paper, we propose the fast wavefront propagation (FWP) framework for improving the performance of both the MMP and CH algorithms. Unlike the original algorithms that propagate only a single window (a data structure locally encodes geodesic information) at each iteration, our method organizes windows with a bucket data structure so that it can process a large number of windows simultaneously without compromising wavefront quality. Thanks to its macro nature, the FWP method is less sensitive to mesh triangulation than the MMP and CH algorithms. We evaluate our FWP-based MMP and CH algorithms on a wide range of large-scale real-world models. Computational results show that our method can improve the speed by a factor of 3-10

    Bioactivity-guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase a Inhibition Effects of Spatholobus Suberectus on Breast Cancer

    Get PDF
    Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A) is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS) is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d) administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1alpha and subsequent accelerated HIF-1alpha proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1alpha/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted.published_or_final_versio
    corecore